Abstract

This brief presents a novel adaptive iterative learning control (ILC) algorithm for a class of single parameter systems with binary-valued observations. Using the certainty equivalence principle, the adaptive ILC algorithm is designed by employing a projection identification algorithm along the iteration axis. It is shown that, even though the available system information is very limited and the desired trajectory is iteration-varying, the proposed adaptive ILC algorithm can guarantee the convergence of parameter estimation over a finite-time interval along the iterative axis; meanwhile, the tracking error is pointwise convergence asymptotically. Two examples are given to validate the effectiveness of the algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.