Abstract
In this paper, an adaptive interaction torque-based assist-as-needed (AITAAN) control method for the lower limb rehabilitation exoskeleton is proposed. Firstly, a desired input torque for the wearer’s lower limb is designed based on computed torque control (CTC). A nonlinear disturbance observer (NDO) is used to assess the lower limb muscle torque. Subtract the estimated muscle torque from the desired input torque, the exoskeleton only provides the remaining torque through interaction torque. Then, the interaction torque tracking problem can be converted to the exoskeleton trajectory tracking problem by using the spring–damper like dynamics model of the interaction force. A flexible boundary prescribed performance controller (PPC) is designed for the exoskeleton to achieve fast and accurate trajectory tracking. The coupled wearer-exoskeleton system is established in SolidWorks and imported to MATLAB/Simulink with SimMechanics. The AITAAN controller’s effectiveness and superiority were then verified through co-simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.