Abstract

Geometry images are a kind of completely regular remeshing methods for mesh representation. Traditional geometry images have difficulties in achieving optimal reconstruction errors and preserving manually selected geometric details, due to the limitations of parametrization methods. To solve two issues, we propose two adaptive geometry images for remeshing triangular meshes. The first scheme produces geometry images with the minimum Hausdorff error by finding the optimization direction for sampling points based on the Hausdorff distance between the original mesh and the reconstructed mesh. The second scheme produces geometry images with higher reconstruction precision over the manually selected region-of-interest of the input mesh, by increasing the number of sampling points over the region-of-interest. Experimental results show that both schemes give promising results compared with traditional parametrization-based geometry images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.