Abstract

Double digest restriction site-associated DNA sequencing (ddRADseq) is a tool for delivering genome-wide single nucleotide polymorphism (SNP) markers for non-model organisms useful in resolving fine-scale population structure and detecting signatures of selection. This study performs population genetic analysis, based on ddRADseq data, of a coniferous species, Keteleeria davidiana var. formosana, disjunctly distributed in northern and southern Taiwan, for investigation of population adaptive divergence in response to environmental heterogeneity. A total of 13,914 SNPs were detected and used to assess genetic diversity, FST outlier detection, population genetic structure, and individual assignments of five populations (62 individuals) of K. davidiana var. formosana. Principal component analysis (PCA), individual assignments, and the neighbor-joining tree were successful in differentiating individuals between northern and southern populations of K. davidiana var. formosana, but apparent gene flow between the southern DW30 population and northern populations was also revealed. Fifteen of 23 highly differentiated SNPs identified were found to be strongly associated with environmental variables, suggesting isolation-by-environment (IBE). However, multiple matrix regression with randomization analysis revealed strong IBE as well as significant isolation-by-distance. Environmental impacts on divergence were found between populations of the North and South regions and also between the two southern neighboring populations. BLASTN annotation of the sequences flanking outlier SNPs gave significant hits for three of 23 markers that might have biological relevance to mitochondrial homeostasis involved in the survival of locally adapted lineages. Species delimitation between K. davidiana var. formosana and its ancestor, K. davidiana, was also examined (72 individuals). This study has produced highly informative population genomic data for the understanding of population attributes, such as diversity, connectivity, and adaptive divergence associated with large- and small-scale environmental heterogeneity in K. davidiana var. formosana.

Highlights

  • Conifers are reported to have slower evolutionary rate due to reduced levels of nucleotide mutation and large effective population size, but with higher ratio of non-synonymous to synonymous divergence, in comparison with angiosperms (Buschiazzo et al, 2012)

  • Further filtering with the presence of single nucleotide polymorphism (SNP) in at least 50% of examined samples across populations resulted in a total of 17,982 SNPs genotyped for samples included both K. davidiana and K. davidiana var. formosana (Supplementary Table 3)

  • We found average values of all population genetic diversity measures were smaller in K. davidiana var. formosana (AR = 1.078, π = 0.080, HO = 0.100, HE = 0.075, and unbiased HE (uHE) = 0.080) than the values in K. davidiana (AR = 1.096, π = 0.101, HO = 0.121, HE = 0.093, and uHE = 0.100) (Supplementary Table 6)

Read more

Summary

Introduction

Conifers are reported to have slower evolutionary rate due to reduced levels of nucleotide mutation and large effective population size, but with higher ratio of non-synonymous to synonymous divergence, in comparison with angiosperms (Buschiazzo et al, 2012). Limited dispersal shaping genetic structure of populations isolated geographically can result in a correlation between genetic and geographic distance known as isolationby-distance (IBD) (Wright, 1943). Adaptive divergence may occur between isolated populations because of topographical and ecological complexity known as isolation-by-environment (IBE), in which genetic distance is positively correlated with environmental distance (Wang et al, 2013; Sexton et al, 2014). Disentangling the effects of IBD from IBE is crucial to understanding their relative impact on population genetic structure, because the relative contributions of IBD and IBE may vary among and within species (Wang et al, 2013; Sexton et al, 2014)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call