Abstract
AbstractThe finite time tracking control of n‐link robotic system is studied for model uncertainties and actuator saturation. Firstly, a smooth function and adaptive fuzzy neural network online learning algorithm are designed to address the actuator saturation and dynamic model uncertainties. Secondly, a new finite‐time command filtered technique is proposed to filter the virtual control signal. The improved error compensation signal can reduce the impact of filtering errors, and the tracking errors of system quickly converge to a smaller compact set within finite time. Finally, adaptive fuzzy neural network finite‐time command filtered control achieves finite‐time stability through Lyapunov stability criterion. Simulation results verify the effectiveness of the proposed control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.