Abstract
An excessive use of non-linear devices in industry results in current harmonics that degrades the power quality with an unfavorable effect on power system performance. In this research, a novel control technique-based Hybrid-Active Power-Filter (HAPF) is implemented for reactive power compensation and harmonic current component for balanced load by improving the Power-Factor (PF) and Total–Hormonic Distortion (THD) and the performance of a system. This work proposed a soft-computing technique based on Particle Swarm-Optimization (PSO) and Adaptive Fuzzy technique to avoid the phase delays caused by conventional control methods. Moreover, the control algorithms are implemented for an instantaneous reactive and active current (I<sub>d</sub>-I<sub>q</sub>) and power theory (Pq0) in SIMULINK. To prevent the degradation effect of disturbances on the system's performance, PS0-PI is applied in the inner loop which generate a required dc link-voltage. Additionally, a comparative analysis of both techniques has been presented to evaluate and validate the performance under balanced load conditions. The presented result concludes that the Adaptive Fuzzy PI controller performs better due to the non-linearity and robustness of the system. Therefore, the gains taken from a tuning of the PSO based PI controller optimized with Fuzzy Logic Controller (FLC) are optimal that will detect reactive power and harmonics much faster and accurately. The proposed hybrid technique minimizes distortion by selecting appropriate switching pulses for VSI (Voltage Source Inverter), and thus the simulation has been taken in SIMULINK/MATLAB. The proposed technique gives better tracking performance and robustness for reactive power compensation and harmonics mitigation. As a result of the comparison, it can be concluded that the PSO-based Adaptive Fuzzy PI system produces accurate results with the lower THD and a power factor closer to unity than other techniques.
Highlights
The electronic devices draw nonsinusoidal current that causes harmonics in the system
This part has demonstrated the effectiveness of the given HSAPF due to non-linear loads. by using the simulation results generated in MATLAB
Pq0 and Id-Iq control techniques are implemented in SIMULINK for current reference compensation, and an innovative Particle Swarm-Optimization (PSO)-based adaptive Fuzzy PI system is proposed to overcome the non-linearity of conventional controllers
Summary
The electronic devices draw nonsinusoidal current that causes harmonics in the system. While a non-linear load is attached to the PCC (Point of Common-Coupling), harmonics are produced that can harm electronic devices commonly used on commercial and industrial scales [1]. Researchers are actively working on harmonics mitigation and power quality enhancement. Some non-linear loads like VFDs (Variable Frequency Drives), transducers, etc., produce harmonics in the power system. Sometimes these harmonics may trip the over-current protection relay, as discussed in [2]. The Active Filter, Passive Filter, Hybrid Filter are the three categories of filters mostly used which mitigate harmonics from the power system. The power quality provided by these filters is less than it is necessary to install an Active Power Filter (APF) in the power system [4]. Series filters are more expensive than shunt filters for small rating industrial loads that reduce active series filters [5]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.