Abstract
An arbitrary Lagrangian--Eulerian finite element method is described for the solution of time-dependent, three-dimensional, free-surface flow problems. Many flows of practical significance involve contact lines, where the free surface meets a solid boundary. This contact line may be pinned to a particular part of the solid but is more typically free to slide in a manner that is characterised by the dynamic contact angle formed by the fluid. We focus on the latter case and use a model that admits spatial variation of the contact angle: thus permitting variable wetting properties to be simulated. The problems are driven by the motion of the fluid free surface (under the action of surface tension and external forces such as gravity) hence the geometry evolves as part of the solution, and mesh adaptivity is required to maintain the quality of the computational mesh for the physical domain. Continuous mesh adaptivity, in the form of a pseudo-elastic mesh movement scheme, is used to move the interior mesh nodes in response to the motion of the fluid's free surface. Periodic, discrete remeshing stages are also used for cases in which the fluid volume has grown, or is sufficiently distorted, by the free-surface motion. Examples are given of a droplet sliding on an inclined uniform plane and of a droplet spreading on a surface with variable wetting properties.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.