Abstract

This paper shows a more exact and practical finite element model of the steel girder deck pavement. Based on Mindlin thick plate theory, a 12-node solid thick plate element was constituted to analyze the pavement. The computation result was compared with that by traditional 4-node and 8-node thick plate finite element, and is satisfactory. A combined plate beam element method is presented to investigate the stiffened plate. A 6-node solid thin plate element was constituted to analyze the top plate based on Kirchhoff thin plate theory. The stiffeners acting as the vertical supporting function mainly are taken as Euler beam elements. A method of using the linear interpolation to realize the longitudinal displacement and the cubic Hermite interpolation to the vertical displacement is presented to analyze the stiffeners. In addition, it is essential to consider the displacement coordination between the top plate and stiffeners. A node-to-node contact scheme, which is applicable for three-dimensional contact analyses involving large deformations, was used to treat the contact problem between pavement and stiffened plate by Lagrange multiplier methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call