Abstract

This chapter introduces how to use the generalized conforming theory to develop the plate element models for the analysis of both thick and thin plates. In Sect. 8.1 and 8.2, a review of the Reissner-Mindlin (thick) plate theory is firstly given, and then, a comparison between this theory and the Kirchhoff (thin) plate theory is presented. In the subsequent sections, the construction methods for the thick/thin plate elements are firstly summarized; especially, the shear locking difficulty caused by the traditional scheme (assuming deflection and rotation fields) is analyzed. Then, three new schemes which are proposed by the authors and can eliminate shear locking from the outset are introduced in detail, including the schemes of assuming rotation and shear strain fields, assuming deflection and shear strain fields, and introducing the shear strain field into the thin plate elements. The formulations of four triangular and rectangular element models are also presented. Numerical examples show that the proposed models exhibit excellent performance for both thick and thin plates, and no shear locking happens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.