Abstract

The performance of the grid-connected inverter was affected by the uncertainty of the grid conditions including the background distortion and the grid impedance. Typically, the feedforward of the grid voltage at the point of common coupling (PCC) highly suppressed the grid current harmonics caused by the grid voltage distortion; however, the PCC grid usually had a nonnegligible grid impedance, and the PCC voltage feedforward aroused serious grid current harmonics or instability. This study proposes a novel adaptive algorithm for the PCC voltage feedforward to work well with the varied grid impedance. In the proposal, the band-pass filters at the harmonic frequencies are used to detect the variation of the grid impedance as well as to facilitate the adaptive PCC voltage feedforward. It is not necessary to inject an additional harmonic to estimate the grid impedance. The basic principles as well as the realization and logic of the proposed algorithm are detailed, and some selected waveforms are provided to verify the superior performance. Compared with the typical robust design or adaptive control, the proposed algorithm does not have to sacrifice the dynamic or the harmonics rejection performance, or to use the on or offline grid impedance estimation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call