Abstract

In this paper, the problem of two-dimensional wing flutter control with sensor and actuator failures is studied. Firstly, the aeroelastic equations of motion for two-dimensional wing with plunge and pitch are established; then the wing flutter model with failure modes is established considering the failure modes of sensor and actuator. Secondly, by designing a novel adaptive fault-tolerant controller, the wing flutter can be suppressed effectively and the external disturbance can be dealt with successfully. The stability of the system is proved by the constructed Lyapunov function. Finally, numerical simulation results show that the adaptive flutter fault-tolerant controller can effectively suppress wing flutter when sensors and actuators fail, and the controller has good robustness to the changes of external disturbances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.