Abstract

Advances in silicon technology and shrinking the feature size to nanometer levels make random variations and low reliability of nano-devices the most important concern for fault-tolerant design. Design of reliable and fault-tolerant embedded processors is mostly based on developing techniques that compensate reliability shortcomings by adding hardware or software redundancy. The recently-proposed redundancy adding techniques are generally applied uniformly to all parts of a system and lead to heavy overheads and inefficiencies in terms of performance, power, and area. Efficient employment of non-uniform redundancy becomes possible when a quantitative analysis of a system behavior while encountering transient faults is provided. In this work, we present a quantitative analysis of the behavior of an embedded processor regarding transient faults and propose a new approach that accurately predicts the architecture vulnerability factor (AVF) in real-time. Another critical concern in design of new-silicon processors is power consumption issue. Dynamic voltage and frequency scaling (DVFS) is an effective method for controlling both energy consumption and performance of a system. Since rate of radiation-induced transient faults depends on operating frequency and supply voltage, DVFS techniques are recently shown to have compromising effects on electronic system reliability. Therefore, ignoring the effects of voltage scaling on fault rate could considerably degrade the system reliability. Here, by exploiting the proposed online AVF prediction methodology and based on analytic derivation, we propose a reliability-aware adaptive dynamic voltage and frequency scaling (DVFS) approach in case study of Multi-Processor System on Chip (MPSoC) with Multiple Clock Domain (MCD) pipeline architectures in which the frequency and voltage are scaled by simultaneously considering all three of power consumption, reliability, and performance. Comparing to the traditional methods of reliability-aware DVFS systems, the proposed reliability-aware DVFS method yields 50% better power saving at the same reliability level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.