Abstract

A novel fault detection method is proposed for detection process with nonlinearity and multimodal batches. Calculating the Mahalanobis distance of samples, the data with the similar characteristics are replaced by the mean of them; thus, the number of training data is reduced easily. Moreover, the super ball regions of mean and variance of training data are presented, which not only retains the statistical properties of original training data but also avoids the reduction of data unlimitedly. To accurately identify faults, two control limits are determined during investigating the distributions of distances and angles between training samples to their nearest neighboring samples in the reduced database; thus, the traditionalk-nearest neighbors (only considering distances) fault detection (FD-kNN) method is developed. Another feature of the proposed detection method is that the control limits vary with updating database such that an adaptive fault detection technique is obtained. Finally, numerical examples and case study are given to illustrate the effectiveness and advantages of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.