Abstract

This paper addresses an adaptive event-triggered consensus control problem for a class of second-order nonlinear multiagent systems (MASs) in an undirected communication topology. A novel adaptive distributed event-triggered consensus control scheme is presented for the MAS with unknown functions based on the definition of an auxiliary state, and the coefficient of the triggered function can be regulated adaptively with dependence on the auxiliary state error to ensure not only the control performance but also the efficiency of the network interactions. Furthermore, two self-triggered algorithms are developed for two cases, known functions and unknown ones, by the current state and information at the previous event time instant instead of the requirement for continuous monitoring auxiliary state errors. In theory, the stability of the resulting closed-loop system is rigorously investigated, and it is proven that all signals in the closed-loop system are bounded and the Zeno behavior is ruled out. Finally, two simulation examples, both real-time and numerical ones, are provided to verify the theoretical claims.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.