Abstract
This article studies the recovery of graphons when they are convolution kernels on compact (symmetric) metric spaces. This case is of particular interest since it covers the situation where the probability of an edge depends only on some unknown nonparametric function of the distance between latent points, referred to as Nonparametric Geometric Graphs (NGG). In this setting, almost minimax adaptive estimation of NGG is possible using a spectral procedure combined with a Goldenshluger-Lepski adaptation method. The latent spaces covered by our framework encompasses (among others) compact symmetric spaces of rank one, namely real spheres and projective spaces. For these latter, explicit computations of the eigenbasis and of the model complexity can be achieved, leading to quantitative non-asymptotic results. The time complexity of our method scales cubicly in the size of the graph and exponentially in the regularity of the graphon. Hence, this paper offers an algorithmically and theoretically efficient procedure to estimate smooth NGG. As a by product, this paper shows a non-asymptotic concentration result on the spectrum of integral operators defined by symmetric kernels (not necessarily positive).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.