Abstract

Restricted Boltzmann machines are energy models made of a visible and a hidden layer. We identify an effective energy function describing the zero-temperature landscape on the visible units and depending only on the tail behaviour of the hidden layer prior distribution. Studying the location of the local minima of such an energy function, we show that the ability of a restricted Boltzmann machine to reconstruct a random pattern depends indeed only on the tail of the hidden prior distribution. We find that hidden priors with strictly super-Gaussian tails give only a logarithmic loss in pattern retrieval, while an efficient retrieval is much harder with hidden units with strictly sub-Gaussian tails; if the hidden prior has Gaussian tails, the retrieval capability is determined by the number of hidden units (as in the Hopfield model).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.