Abstract
In this paper, numerical solutions are investigated based on the Trefftz method for an over-specified boundary value problem contaminated with artificial noise. The main difficulty of the inverse problem is that divergent results occur when the boundary condition on over-specified boundary is contaminated by artificial random errors. The mechanism of the unreasonable result stems from its ill-posed influence matrix. The accompanied ill-posed problem is remedied by using the Tikhonov regularization technique and the linear regularization method, respectively. This remedy will regularize the influence matrix. The optimal parameter λ of the Tikhonov technique and the linear regularization method can be determined by adopting the adaptive error estimation technique. From this study, convergent numerical solutions of the Trefftz method adopting the optimal parameter can be obtained. To show the accuracy of the numerical solutions, we take the examples as numerical examination. The numerical examination verifies the validity of the adaptive error estimation technique. The comparison of the Tikhonov regularization technique and the linear regularization method was also discussed in the examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.