Abstract

Energy management strategies (EMSs) are one of the key technologies for the development of plug-in hybrid electric buses (PHEBs). This paper addresses the issue of optimal energy distribution for PHEBs under significant variations in passenger load at different bus stations, which cannot be solved by a single equivalent factor equivalent fuel consumption minimization energy management strategy (ECMS). An adaptive equivalent factor equivalent fuel consumption minimization energy management strategy (A-ECMS) considering passenger load is proposed. First, the powertrain system of the PHEB is modeled, and the accuracy of the model is verified in a simulation environment. Then, the reference SOC descent trajectory of the battery is obtained using a dynamic programming (DP) algorithm, the recursive least squares (RLS) method is employed to identify the passenger load, and the influence of different loads on the state of charge (SOC) trajectory under a single equivalent factor is analyzed. Finally, a genetic algorithm (GA) is used to establish the correspondence between passenger load, bus station, and equivalent factor, enabling the actual SOC to follow the reference SOC descent trajectory, thereby achieving optimal energy distribution. Simulation results demonstrate that the A-ECMS reduces fuel consumption of the PHEB per 100 km by 2.59% and 10.10% compared to the ECMS and rule-based EMS, respectively, validating the effectiveness of the proposed strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call