Abstract

Islands, rich in solar, wind, and wave energy, present an opportunity for sustainable electrolytic hydrogen production. The challenge lies in the variability of 100 % renewable energy, affecting hydrogen output and electrolyzers' lifespan. To address this, a flexible hybrid electrolyzers structure is designed. It cleverly utilizes the low cost and high efficiency of alkaline electrolyzer to absorb the stable renewable energy component, and the rapid response capability of proton exchange membrane electrolyzer to absorb the fluctuating renewable energy component. Thus, it achieves efficient and long-lasting hydrogen production. Then, an operational optimization strategy is proposed to achieve the optimal hydrogen production scheme for this structure. This strategy includes an electrolyzer scheduling model that considers the dynamic process of state transitions and life degradation under the impact of fluctuating power sources. Furthermore, it encompasses an optimization algorithm balanced for scheduling accuracy, solving efficiency, and reduced risk of local optima through a bi-level fuzzy controller, simplifying the search space. Case studies demonstrated the hybrid structure's effectiveness in minimizing lifespan degradation and maximizing profits, validating the optimization method's capacity to quickly find the optimal scheduling plan. Results showed improvements of 6.6 % in annual return, 13.4 % in device lifespan, and 30.1 % in optimization time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.