Abstract

Adaptive optimization (AO) schemes based on stochastic approximation principles such as the Random Directions Kiefer–Wolfowitz (RDKW), the Simultaneous Perturbation Stochastic Approximation (SPSA) and the Adaptive Fine-Tuning (AFT) algorithms possess the serious disadvantage of not guaranteeing satisfactory transient behavior due to their requirement for using random or random-like perturbations of the parameter vector. The use of random or random-like perturbations may lead to particularly large values of the objective function, which may result to severe poor performance or stability problems when these methods are applied to closed-loop controller optimization applications. In this paper, we introduce and analyze a new algorithm for alleviating this problem. Mathematical analysis establishes satisfactory transient performance and convergence of the proposed scheme under a general set of assumptions. Application of the proposed scheme to the adaptive optimization of a large-scale, complex control system demonstrates the efficiency of the proposed scheme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call