Abstract

BackgroundRoute choice and travel performance of fly-forage migrants are partly driven by large-scale habitat availability, but it remains unclear to what extent wind support through large-scale wind regimes moulds their migratory behaviour. We aimed to determine to what extent a trans-equatorial fly-forage migrant engages in adaptive drift through distinct wind regimes and biomes across Africa. The Inter-tropical Front (ITF) marks a strong and seasonally shifting climatic boundary at the thermal equator, and we assessed whether migratory detours were associated with this climatic feature. Furthermore, we sought to disentangle the influence of wind and biome on daily, regional and seasonal travel performance.MethodsWe GPS-tracked 19 adult Eleonora’s falcons Falco eleonorae from the westernmost population on the Canary Islands across 39 autumn and 36 spring migrations to and from Madagascar. Tracks were annotated with wind data to assess the falcons’ orientation behaviour and the wind support they achieved in each season and distinct biomes. We further tested whether falcon routes across the Sahel were correlated with the ITF position, and how realized wind support and biome affect daily travel times, distances and speeds.ResultsChanges in orientation behaviour across Africa’s biomes were associated with changes in prevailing wind fields. Falcons realized higher wind support along their detours than was available along the shortest possible route by drifting through adverse autumn wind fields, but compromised wind support while detouring through supportive spring wind fields. Movements across the Sahel-Sudan zone were strongly associated to the ITF position in autumn, but were more individually variable in spring. Realized wind support was an important driver of daily travel speeds and distances, in conjunction with regional wind-independent variation in daily travel time budgets.ConclusionsAlthough daily travel time budgets of falcons vary independently from wind, their daily travel performance is strongly affected by orientation-dependent wind support. Falcons thereby tend to drift to minimize or avoid headwinds through opposing wind fields and over ecological barriers, while compensating through weak or supportive wind fields and over hospitable biomes. The ITF may offer a climatic leading line to fly-forage migrants in terms of both flight and foraging conditions.

Highlights

  • Migrating birds must negotiate highly variable as well as dynamic atmospheric conditions during their global wanderings

  • We further show that daily travel time budgets were largely independent of wind support [58], and mainly varied due to falcons extending travel time over barriers and reducing travel time over hospitable habitats [28, 31]

  • By contextualizing route choice and migratory performance patterns in prevailing winds and seasonal climates across distinct biomes we revealed a complex interplay of adaptive drift and barrier-avoidance responses in the trans-equatorial migration of a fly-forage migrant

Read more

Summary

Introduction

Migrating birds must negotiate highly variable as well as dynamic atmospheric conditions during their global wanderings. Studies integrating biologging data with atmospheric models generally reveal some alignment of seasonal loop migrations with prevailing winds across marine [11,12,13] as well as terrestrial environments [14,15,16,17]. For landbirds this is especially true over ecological barriers - where exhaustion from battling adverse winds can have lethal consequences [18,19,20]. We sought to disentangle the influence of wind and biome on daily, regional and seasonal travel performance

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call