Abstract
Linear programming (LP) decoding approximates optimal maximum-likelihood (ML) decoding of a linear block code by relaxing the equivalent ML integer programming (IP) problem into a more easily solved LP problem. The LP problem is defined by a set of linear inequalities derived from the constraints represented by the rows of a parity-check matrix of the code. Adaptive linear programming (ALP) decoding significantly reduces the complexity of LP decoding by iteratively and adaptively adding necessary constraints in a sequence of smaller LP problems. Adaptive introduction of constraints derived from certain additional redundant parity check (RPC) constraints can further improve ALP performance. In this paper, we propose a new and effective algorithm to identify RPCs that produce linear constraints, referred to as “cuts,” that can eliminate non-ML solutions generated by the ALP decoder, often significantly improving the decoder error-rate performance. The cut-finding algorithm is based upon a specific transformation of an initial parity-check matrix of the linear block code. Simulation results for several low-density parity-check codes demonstrate that the modified ALP decoding algorithm significantly narrows the performance gap between LP decoding and ML decoding.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have