Abstract

We discuss a two-model multilayer neural network controller for adaptive control of mean arterial blood pressure (MABP) using sodium nitroprusside. A model with an autoregressive moving average (ARMA), representing the dynamics of the system, and a modified back-propagation training algorithm are used to design the control system to meet specified objectives of design (settling time and undershoot/overshoot) and clinical constraints. The controller is associated with a weighting-determinant unit (WDU) to determine and update the output weighting factor of the parallel two-model neural network for adequate control action and a control-signal modification unit (CMU) to comply with clinical constraints and to suppress the effect of adverse noise and to improve the WDU performance. Extensive computer simulations indicate satisfactory performance and robustness of the proposed controller in the presence of much noise, over the full range of plant parameters, uncertainties, and large variations of parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.