Abstract
Interpolation-based methods are well-established and effective approaches for the efficient generation of accurate reduced-order surrogate models. Common challenges for such methods are the automatic selection of good or even optimal interpolation points and the appropriate size of the reduced-order model. An approach that addresses the first problem for linear, unstructured systems is the iterative rational Krylov algorithm (IRKA), which computes optimal interpolation points through iterative updates by solving linear eigenvalue problems. However, in the case of preserving internal system structures, optimal interpolation points are unknown, and heuristics based on nonlinear eigenvalue problems result in numbers of potential interpolation points that typically exceed the reasonable size of reduced-order systems. In our work, we propose a projection-based iterative interpolation method inspired by IRKA for generally structured systems to adaptively compute near-optimal interpolation points as well as an appropriate size for the reduced-order system. Additionally, the iterative updates of the interpolation points can be chosen such that the reduced-order model provides an accurate approximation in specified frequency ranges of interest. For such applications, our new approach outperforms the established methods in terms of accuracy and computational effort. We show this in numerical examples with different structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.