Abstract

We formulate and analyze an adaptive algorithm for isogeometric analysis with hierarchical B-splines for weakly-singular boundary integral equations. We prove that the employed weighted-residual error estimator is reliable and converges at optimal algebraic rate. Numerical experiments with isogeometric boundary elements for the 3D Poisson problem confirm the theoretical results, which also cover general elliptic systems like linear elasticity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.