Abstract

We are developing a class of optical phased-array-radar processors which use the large number of degrees-of-freedom (DOF) available in three-dimensional photorefractive volume holograms to time integrate the adaptive weights in order to perform beam-steering and jammer-cancellation signal-processing tasks for very large phased-array antennas[1,2]. For a large broadband phased-array antenna containing 1000s of array elements, beam steering and jammer cancellation in a dynamic signal environment represents an extremely demanding signal processing task well beyond the capabilities of microelectronic digital signal processing because of the large number of DOF required for adaptation. The three-dimensional nature of the signal environment (2 angle-of-arrival and frequency) represents a signal processing problem which maps well into a highly parallel optical processing architecture utilizing photorefractive volume holograms. The beam-steering and jammer-nulling processor we present uses relatively simple components; two photorefractive crystals, two single-channel high-speed detectors, and two single channel acousto-optic Bragg cells. The bandwidth capabilities of these components approach a GHz allowing the processing of wide-band signals. The required number of processor components used for implementing the adaptive algorithm is independent of the number of elements in the phased-array in contrast to traditional electronic or acousto-optic approaches[4,5], in which the hardware complexity of the processor scales in proportion to array size. We describe the two main subsystems of the processor, the beam-forming and the jammer-nulling subsystems, and present results demonstrating simultaneous main beam formation and jammer suppression in the combined processor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.