Abstract
Vehicle-to-everything communication system is a strong candidate for improving the driving experience and automotive safety by linking vehicles to wireless networks. To take advantage of the full benefits of vehicle connectivity, it is essential to ensure a stable network connection between roadside unit (RSU) and fast-moving vehicles. Based on the extended Kalman filter (EKF), we develop a vehicle tracking algorithm to enable reliable radio connections. For the vehicle tracking algorithm, we focus on estimating the rapid changes in the beam direction of a high-mobility vehicle while reducing the feedback overhead. Furthermore, we design a beamforming codebook that considers the road layout and RSU. By leveraging the proposed beamforming codebook, vehicles on the road can expect a service quality similar to that of conventional cellular services. Finally, a beamformer selection algorithm is developed to secure sufficient gain for the system's link budget. Numerical results verify that the EKF-based vehicle tracking algorithm and the proposed beamforming structure are more suitable for vehicle-to-infrastructure networks compared to existing schemes.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have