Abstract
In this paper, a novel approach for recognition of walking activities and gait events with wearable sensors is presented. This approach, called adaptive Bayesian inference system (BasIS), uses a probabilistic formulation with a sequential analysis method, for recognition of walking activities performed by participants. Recognition of gait events, needed to identify the state of the human body during the walking activity, is also provided by the proposed method. In addition, the BasIS system includes an adaptive action–perception method for the prediction of gait events. The adaptive approach uses the knowledge gained from decisions made over time by the inference system. The action–perception method allows the BasIS system to autonomously adapt its performance, based on the evaluation of its own predictions and decisions made over time. The proposed approach is implemented in a layered architecture and validated with the recognition of three walking activities:level-ground, ramp ascent and ramp descent. The validation process employs real data from three inertial measurements units attached to the thigh, shanks and foot of participants while performing walking activities. The experiments show that mean decision times of 240 ms and 40 ms are needed to achieve mean accuracies of 99.87% and 99.82% for recognition of walking activities and gait events, respectively. The validation experiments also show that the performance, in accuracy and speed, is not significantly affected when noise is added to sensor measurements. These results show that the proposed adaptive recognition system is accurate, fast and robust to sensor noise, but also capable to adapt its own performance over time. Overall, the adaptive BasIS system demonstrates to be a robust and suitable computational approach for the intelligent recognition of activities of daily living using wearable sensors.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have