Abstract

<abstract><p>In this work, an adaptive backstepping position tracking control using neural network (NN) approximation mechanism is proposed with respect to the translational system of quadrotor unmanned aerial vehicle (QUAV). Concerning the translational system of QUAV, on the one hand, it does not satisfy the matching condition and is an under-actuation dynamic system; on the other hand, it is with strong nonlinearity containing some uncertainty. To achieve the control objective, an intermediary control is introduced to handle the under-actuation problem, then the backstepping technique is combined with NN approximation strategy, which is employed to compensate the uncertainty of the system. Compared with traditional adaptive methods, the proposed adaptive NN position control of QUAV can alleviate the computation burden effectively, because it only trains a scalar adaptive parameter instead of the adaptive parameter vector or matrix. Finally, according to Lyapunov stability proof and computer simulation, it is proved that the control tasks can be accomplished.</p></abstract>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call