Abstract

AbstractA Lypunov‐based Adaptive Backstepping Control (ABSC) approach is designed for a power Buck converter. This strategy is an advanced version of the Backstepping method utilising Lyapunov stability function to reach a higher stability and a better disturbance rejection behaviour in the practical applications. In addition, to reduce the computational burden and increase ease of implantation, Black‐box technique is considered assuming no accurate mathematical model for the system. Nonetheless, in real‐time environments, disturbances with wider ranges including: supply voltage variation, parametric variation, and noise can negatively impact the operation of this method. To compensate for this problem, the gains of the controller should be tuned again for better adaptability with the working condition. Therefore, to satisfy this need and enhance the controller's performance, a metaheuristic algorithm is applied in the control scheme called Grey Wolf Optimisation (GWO) algorithm. GWO is a well‐behaved nature‐inspired algorithm with faster decision‐making dynamics along with more accuracy over different optimisation algorithms. To better elaborate the merits of this approach, conventional BSM and PSO‐based PID schemes are also designed and tested in different situations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.