Abstract
Detecting moving objects by using an adaptive background model is a critical component for many vision-based applications. In this paper, we propose a novel background modeling algorithm for traffic video surveillance based on objects dynamicity. Our algorithm is based on the definition of background as a set of static objects and on the observation that a static object is a set of pixels having the same appearance in long time interval. The normalized RGB color is used to describe the appearance under change lighting conditions, and a binary label is introduced to capture the dynamicity of objects over time. Finally, the cardinality function, calculated in each continued time period, is used to select persistent appearance corresponding to background objects. An update formula is proposed to reconstruct background model periodically based on current frame and last background image. Experimental results from several video sequences validate the effectiveness of the proposed algorithm
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have