Abstract

Critical infrastructure networks are vital for a functioning society and their failure can have widespread consequences. Decision-making for critical infrastructure resilience can suffer based on several characteristics exhibited by these networks, including (i) that there exist interdependencies with other networks, (ii) that several decision-makers represent potentially competing interests among the interdependent networks, and (iii) that information about other decision-makers’ actions are uncertain and potentially unknown. To address these concerns, we propose an adaptive algorithm using machine learning to integrate predictions about other decision-makers’ behavior into an interdependent network restoration planning problem considering an imperfect information sharing environment. We examined our algorithm against the optimal solution for various types, sizes, and dependencies of networks, resulting in insignificant differences. To assess the proposed algorithm’s efficiency, we compared its results with a proposed heuristic method that prioritizes, and schedules components restoration based on centrality-based importance measures. The proposed algorithm provides a solution sufficiently close to the optimal solution showing the algorithm performs well in situations where the information sharing environment is incomplete.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.