Abstract

For a class of high-gain stabilizable multivariable linear infinite-dimensional systems we present an adaptive control law which achieves approximate asymptotic tracking in the sense that the tracking error tends asymptotically to a ball centred at 0 and of arbitrary prescribed radius λ>0. This control strategy, called λ-tracking, combines proportional error feedback with a simple nonlinear adaptation of the feedback gain. It does not involve any parameter estimation algorithms, nor is it based on the internal model principle. The class of reference signals is W 1,∞, the Sobolev space of absolutely continuous functions which are bounded and have essentially bounded derivative. The control strategy is robust with respect to output measurement noise in W 1,∞ and bounded input disturbances. We apply our results to retarded systems and integrodifferential systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.