Abstract

During the last decade the spectral vanishing viscosity (SVV) method has been adopted successfully for large-eddy-type simulations (LES) with high-order discretizations in both Cartesian and cylindrical coordinate systems. For the latter case, however, previous studies were confined to annular domains. In the present work, we examine the applicability of SVV in cylindrical coordinates to flows in which the axis region is included, within the setting of an exponentially convergent spectral element–Fourier discretization. In addition to the ‘standard’ SVV viscosity kernel, two modified kernels with enhanced stabilization in the axis region are considered. Three fluid flow examples are considered, including turbulent pipe flow. The results, on the one hand, show a surprisingly small influence of the SVV kernel, while on the other, they reveal the importance of spatial resolution in the axis region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.