Abstract

The steady increase in the world’s population combined with the globally growing need for living space by each individual is leading to an ever-faster consumption of limited resources by the construction industry, particularly sand and gravel. While a consensus exists regarding the sand and gravel resource availability on a global level for long-term supply, it is important to note that local supply shortages may still occur. Thus, this study aims to identify critical aspects of both locally and globally traded construction materials by adapting the ESSENZ method, which evaluates the criticality of globally traded abiotic resources. For the specific case of the local availability of construction materials, a new indicator is introduced: The Surface Squared Driven Indicator (SSDI), which is adapted to the specific conditions of the German market. The modified ESSENZ method is applied in a case study of materials needed for maintaining the material stock of the city of Herne, Germany. The results indicate that raw materials for concrete production in Germany, such as aggregates, are expected to be sufficient in the long term, but silica sand for glass production is only guaranteed for a few decades. Concrete poses the highest supply risk due to its high material demand, with steel and concrete dominating the environmental impacts. Limitations include data availability and the exclusion of certain materials. The adapted ESSENZ method allows for the comparison of criticality results for materials traded globally and locally, offering valuable insights for decision-makers seeking to promote sustainable construction practices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call