Abstract

Wireless mesh networks have recently presented a promising environment for many researchers to develop large-scale wireless communication. Traffic in WMNs often suffers from congestion due to heavy traffic load’s saturation of certain routes. Therefore, this article proposes an efficient approach for congestion awareness and load balancing in WMNs, based on the Ant Colony Optimization (ACO) approach. The proposed approach aims to raise the performance of the WMN by distributing the traffic load between optimal routes and avoiding severe traffic congestion. The proposed approach relies on three basic mechanisms: detection of severe congestion within the ideal paths used for data transmission, creation of ideal secondary paths with updated pheromone values, and distribution of the traffic load (data packet flow) between the primary and secondary ideal paths. According to the results of the NS2 simulator, the suggested approach increased the WMN throughput by 14.8% when compared to the CACO approach and by 37% when employing the WCETT approach. The results also showed that the proposed approach achieved an average end-to-end delay closing of 0.0562, while WCETT and CACO approaches achieved an average end-to-end delay close to 0.1021 and 0.0976, respectively. The results indicated that the proposed approach achieved a lower percentage of dropped packets by 6.97% and 0.99% compared to the WCETT and CACO approaches. Thus, the proposed approach is effective in improving the performance of WMNs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call