Abstract

Pulsed light (PL) technology is an efficient surface decontamination process. Used in low transmitted energy conditions, PL induces a stress that can be perceived by bacteria. The effect of such a PL stress was investigated on the highly environmental adaptable germ Pseudomonas aeruginosa PAO1. Pulses of transmitted energy (fluence) reaching 1·8Jcm(-2) can kill 10(9) bacteria. Application of a lower sublethal PL dose allowed the bacteria to resist and survive more efficiently to a subsequent dose of PL. This sublethal dose was not increasing the mutation frequency of Ps. aeruginosa, but altered the abundance of 15 proteins as revealed by a global proteome analysis, including stress-induced proteins, phage-related proteins, energy and carbon metabolisms, cell motility, and transcription and translation regulators. A response to a low-energy PL dose takes place in Ps. aeruginosa, reducing the energy conversion systems, while increasing transcription and translation processes to produce proteins involved in chaperone mechanisms and phage-related proteins, probably to protect the bacterium against a new PL-induced stress. Taken together, these results suggest that a low-energy PL dose is sufficient to provoke adaptation of Ps. aeruginosa, leading to enhancing its resistance to a subsequent lethal treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call