Abstract
Global gel-free proteomic analysis by mass spectrometry has been widely used as an important tool for exploring complex biological systems at the whole genome level. Simultaneous analysis of a large number of protein species is a complicated and challenging task. The challenges exist throughout all stages of a global gel-free proteomic analysis: experimental design, peptide/protein identification, data preprocessing and normalization, and inferential analysis. In addition to various efforts to improve the analytical technologies, statistical methodologies have been applied in all stages of proteomic analyses to help extract relevant information efficiently from large proteomic datasets. In this review, we summarize current applications of statistics in several stages of global gel-free proteomic analysis by mass spectrometry. We discuss the challenges associated with the applications of various statistical tools. Whenever possible, we also propose potential solutions on how to improve the data collection and interpretation for mass-spectrometry-based global proteomic analysis using more sophisticated and/or novel statistical approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.