Abstract
We present a compliance adaptation method for online natural dynamics modification of multijoint robots performing cyclic tasks. In this method, parameters of multibasis nonlinear compliances acting in parallel with actuators are adapted to minimize actuation forces that results in joint-by-joint energy consumption reduction. Stability, convergence, and optimality of this method are proved analytically for a general compliance structure. We do not impose any specific constraint on the controller structure and tracking performance, yet stable tracking of cyclic motions is necessary for the convergence to the optimal solution. Extensive simulations on a set of systems ranging from simple mass–spring system to robotic manipulator (with linear and nonlinear compliances), along with the experimental results on a 1-degree of freedom compliant revolute joint with two basis functions in the compliance profile, demonstrate the efficiency of our method in terms of stability, convergence, and optimality; i.e., actuation force and energy consumption reduction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.