Abstract
A typical feature of neurons is their ability to encode neural information dynamically through spike frequency adaptation (SFA). Previous studies of SFA on neuronal synchronization were mainly concentrated on the correlated firing between neuron pairs, while the synchronization of neuron populations in the presence of SFA is still unclear. In this study, the influence of SFA on the population synchronization of neurons was numerically explored in electrically coupled networks, with regular, small-world, and random connectivity, respectively. The simulation results indicate that cross-correlation indices decrease significantly when the neurons have adaptation compared with those of nonadapting neurons, similar to previous experimental observations. However, the synchronous activity of population neurons exhibits a rather complex adaptation-dependent manner. Specifically, synchronization strength of neuron populations changes nonmonotonically, depending on the degree of adaptation. In addition, single neurons in the networks can switch from regular spiking to bursting with the increase of adaptation degree. Furthermore, the connection probability among neurons exhibits significant influence on the population synchronous activity, but has little effect on the burst generation of single neurons. Accordingly, the results may suggest that synchronous activity and burst firing of population neurons are both adaptation-dependent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.