Abstract

Decisions emerge from the concerted activity of neuronal populations distributed across brain circuits. However, the analytical tools best suited to decode decision signals from neuronal populations remain unknown. Here we show that knowledge of correlated variability between pairs of cortical neurons allows perfect decoding of decisions from population firing rates. We recorded pairs of neurons from secondary somatosensory (S2) and premotor (PM) cortices while monkeys reported the presence or absence of a tactile stimulus. We found that while populations of S2 and sensory-like PM neurons are only partially correlated with behavior, those PM neurons active during a delay period preceding the motor report predict unequivocally the animal's decision report. Thus, a population rate code that optimally reveals a subject's perceptual decisions can be implemented just by knowing the correlations of PM neurons representing decision variables.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.