Abstract

Cyber-physical systems (CPS) frequently have to use massive redundancy to meet application requirements for high reliability. While such redundancy is required, it can be activated adaptively, based on the current state of the controlled plant. Most of the time, the plant is in a state that allows for a lower level of fault tolerance. Avoiding the continuous deployment of massive fault tolerance will greatly reduce the workload of the CPS, and lower the operating temperature of the cyber sub-system, thus increasing its reliability. In this article, we extend our prior research by demonstrating a software simulation framework Adaptive Fault Tolerance (AdaFT) that can automatically generate the sub-spaces within which our adaptive fault tolerance can be applied. We also show the theoretical benefits of AdaFT and its actual implementation in several real-world CPSs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.