Abstract

Silver (Ag) recovery is essential for ecological protection, human health and economic benefits. Effective capture of Ag(I) from wastewater is still challenging due to insufficient accessible sites of adsorbents. Herein, an acyl chloride-mediated strategy is developed to synthesize rhodanine(Rd) modified UiO-66 derivatives for Ag(I) adsorption. Benefitting from the high grafting density of Rd, the optimal Rd-modified UiO-66-NH2 (UiO-66-NH2@20Rd) features an ultra-high uptake capacity (maximum capacity of 923.9 mg·g−1) and selectivity (maximum selectivity coefficient of 1665.52) for Ag(I). Almost 90 % of Ag(I) could be captured in one minute over UiO-66-NH2@20Rd and maintained a removal rate of 98.9 % even after six cycles. Moreover, a fixed-bed column test demonstrates that approximately 21,780 bed volumes of Ag(I) simulated wastewater can be effectively treated, indicating great promise for practical application. Mechanism investigation illustrates that outstanding performance can be attributed to the synergistic effect of Ag(I) adsorption and reduction on dense rhodanine sites. This study highlights that such a general strategy can provide a valuable avenue toward various functional adsorption materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call