Abstract

The molecular packing of various fully hydrated mixed-chain phosphatidylcholines was studied by X-ray diffraction and electron microscopy. All of the mixed-chain phosphatidylcholines under study were shown to adopt a lamellar or bilayer form in aqueous media. The bilayer thickness of these mixed-chain phosphatidylcholines was determined from the lamellar repeat distance in the small-anglé X-ray diffraction region by controlled swelling experiments. At T greater than Tm, the bilayer thickness of C(18):C(12)PC and C(18):C-(10)PC is found to be comparable to that of C(14):C(14)PC. In contrast, the bilayer thickness of these highly asymmetric phosphatidylcholines is considerably less than that of the symmetric C(14):C(14)PC at temperatures below Tm. Moreover, the wide-angle X-ray diffraction patterns taken at T less than Tm consist of at least two sharp reflections at 4.2 and 4.6 A. These X-ray diffraction data suggest that these highly asymmetric mixed-chain phospholipids, in excess water, form mixed interdigitated bilayers in the gel state and that the acyl chain packing in the gel-state bilayer is not hexagonal. The freeze-fracture planes of these mixed-chain phosphatidylcholines are discontinuous at T less than Tm, supporting the conclusion drawn from X-ray diffraction data that these highly asymmetric phosphatidylcholines form interdigitated bilayers at temperatures below Tm. The molecular packing of fully hydrated C(18):C(14)PCs in bilayers is distinctively different from that of C(18):C(10)PCs or C(18):C(10)PCs.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call