Abstract

To examine the thermotropic phase behavior of various mixed-chain phosphatidylcholines in excess water and to compare it with the known behavior of identical-chain phosphatidylcholines, we have carried out high-resolution differential scanning calorimetric (DSC) studies on aqueous dispersions of 10 different mixed-chain phosphatidylcholines. These lipids, C(16):C(18)PC, C(18):C(16)PC, C(15):C(19)PC, C(19):C(15)PC, C(14):C(20)PC, C(20):C(14)PC, C(13):C(21)PC, C(21):C(13)PC, C(12):C(22)PC, and C(22):C(12)PC, have a common molecular weight which is the same as that of C(17):C(17)PC, an identical-chain phosphatidylcholine with a molecular weight of 762.2. When the values of any of the thermodynamic parameters (Tm, delta H, and delta S) of the mixed-chain phosphatidylcholines and C(17):C(17)PC are plotted against the normalized chain-length difference (delta C/CL), a linear function with negative slope is obtained provided that the value of delta C/CL is within the range of 0.09-0.4. The linear relationship suggests that these mixed-chain phospholipids are packed in the gel-state bilayer similar to the bilayer structure of C(17):C(17)PC at T less than Tm; however, the negative slope suggests that the conformational statistics of the hydrocarbon chain and the lateral lipid-lipid interactions of these phosphatidylcholines in the gel-state bilayer are perturbed proportionally by a progressive increase in the chain-length inequivalence between the two acyl chains within each lipid molecule. When the value of delta C/CL for mixed-chain phosphatidylcholines reaches the range of 0.44-0.55, the thermotropic phase behavior deviates markedly from that of less asymmetric phosphatidylcholines, suggesting that these highly asymmetric lipids are packed into mixed interdigitated bilayers at T less than Tm. The heating and cooling pathways of aqueous dispersions prepared from the 10 mixed-chain phospholipids are also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call