Abstract
To study the influence of a linker rigidity and donor–acceptor properties, the P–CH2–O–CHR– fragment in acyclic nucleoside phosphonates (e.g., acyclovir, tenofovir) was replaced by the P–CH2–HN–C(O)– residue. The respective phosphonates were synthesized in good yields by coupling the straight chain of ω-aminophosphonates and nucleobase-derived acetic acids with EDC. Based on the 1H and 13C NMR data, the unrestricted rotation within the methylene and 1,2-ethylidene linkers in phosphonates from series a and b was confirmed. For phosphonates containing 1,3-propylidene (series c) fragments, antiperiplanar disposition of the bulky O,O-diethylphosphonate and substituted amidomethyl groups was established. The synthesized ANPs P–X–HNC(O)–CH2B (X = CH2, CH2CH2, CH2CH2CH2, CH2OCH2CH2) appeared inactive in antiviral assays against a wide variety of DNA and RNA viruses at concentrations up to 100 μM while marginal antiproliferative activity (L1210 cells, IC50 = 89 ± 16 μM and HeLa cells, IC50 = 194 ± 19 μM) was noticed for the analog derived from (5-fluorouracyl-1-yl)acetic acid and O,O-diethyl (2-aminoethoxy)methylphosphonate.Graphical abstract
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.