Abstract
Several Octopodidae species have a great potential for the diversification of worldwide aquaculture. Unfortunately, the lack of stress-related biomarkers in this taxon results an obstacle for its maintenance in conditions where animal welfare is of paramount relevance. In this study, we made a first approach to uncover physiological responses related to fishing capture in Eledone moschata, Eledone cirrhosa, and Octopus vulgaris. Captured octopus from all three species were individually maintained in an aquaculture system onboard of oceanographic vessel in south-western waters of Europe. Haemolymph plasma and muscle were collected in animals at the moment of capture, and recovery was evaluated along a time-course of 48 h in Eledone spp., and 24 h for O. vulgaris. Survival rates of these species captured in spring and autumn were evaluated. Physiological parameters such as plasma pH, total CO2, peroxidase activity, lysozyme, hemocyanin, proteases, pro-phenoloxidase, anti-proteases, free amino acids, lactate and glucose levels, as well as muscle water percentage, free amino acids, lactate, glycogen and glucose values were analyzed. The immune system appears to be compromised in these species due to capture processes, while energy metabolites were mobilized to face the acute-stress situation, but recovery of all described parameters occurs within the first 24 h after capture. Moreover, this situation exerts hydric balance changes, as observed in the muscle water, being these responses depending on the species assessed. In conclusion, three Octopodidae species from south-western waters of Europe have been evaluated for stress-related biomarkers resulting in differentiated mechanisms between species. This study may pave the way to further study the physiology of stress in adult octopuses and develop new methodologies for their growth in aquaculture conditions.
Highlights
Cephalopods are of interest for human consumption and their fisheries constituted 6.4% of total world trade of fish products in 2016, and are amongst the most captured species in marine fisheries (FAO, 2018)
Eledone moschata and O. vulgaris did not show different survival rates between seasons despite the differences observed in the environmental variables described at the sea bottom, the aquariums and the air at the fishing deck (Table 2)
This study described that octopus rely on amino acids and carbohydrates to face an acute-stress challenge, and that the immune system is compromised during the first hours after capture, but managed to recover in less than 24 h
Summary
Cephalopods are of interest for human consumption and their fisheries constituted 6.4% of total world trade of fish products in 2016, and are amongst the most captured species (in tons) in marine fisheries (FAO, 2018). Landings of octopus in Europe consist exclusively of three Octopodidae species: musky octopus (Eledone moschata Lamarck, 1798), horned octopus (Eledone cirrhosa Lamarck, 1798) and common octopus (Octopus vulgaris Cuvier, 1797). The latter species dominates European catches and landings, and is taken in greater numbers in southern waters (Pierce et al, 2010). Bathymetric differences exist between these species, with O. vulgaris inhabiting depths from 0 to 200 m, E. moschata could be captured between 15 to 200 m depth, and E. cirrhosa occurs at deeper waters, between 50 and 300 m, or more (Pierce et al, 2010)
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have