Abstract
Ceftiofur (CEF) is a third-generation and the first animal-specific cephalosporin that is widely used in animal husbandry. As a heat-labile antibiotic, the cytotoxicity of CEF after thermal treatment has been reported. This study seeks to investigate the potential toxicity of thermally treated CEF (TTC) in vivo based on acute oral toxicity studies and acute intraperitoneal studies in mice. Our data indicated that TTC exhibited significant increased toxicity in mice compared with CEF. TTC resulted in weight gain, hypercholesterolemia, hepatocyte steatosis and hepatocyte mitochondrial damage, and downregulated β-oxidation-related genes in mice in acute oral toxicity studies. In addition, TTC caused acute pulmonary congestion, increased levels of reactive oxygen species (ROS), prolonged coagulation time, and even death in mice in acute intraperitoneal toxicity studies. Our data showed that thermal treatment enhanced the toxicity of CEF in vivo. Lung and liver are the main target organs in the pathological damage process mediated by TTC. These findings suggested that residual CEF in animal-derived food may represent a potential food safety risk and pose a potential threat to human health.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have