Abstract
Neuroinflammation is a salient part of diverse neurological and psychiatric pathologies that associate with neuronal hyperexcitability, but the underlying molecular and cellular mechanisms remain to be identified. Here, we show that peripheral injection of lipopolysaccharide (LPS) renders the dentate gyrus (DG) hyperexcitable to perforant pathway stimulation invivo and increases the internal spiking propensity of dentate granule cells (DGCs) invitro 24h post-injection (hpi). In parallel, LPS leads to a prominent downregulation of chloride extrusion via KCC2 and to the emergence of NKCC1-mediated chloride uptake in DGCs under experimental conditions optimized to detect specific changes in transporter efficacy. These data show that acute neuroinflammation leads to disruption of neuronal chloride regulation, which unequivocally results in a loss of GABAergic inhibition in the DGCs, collapsing the gating function of the DG. The present work provides a mechanistic explanation for neuroinflammation-driven hyperexcitability and consequent cognitive disturbance.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have