Abstract
Supraoptic nucleus (SON) neurons secrete either oxytocin or vasopressin into the bloodstream from their axon terminals in the posterior pituitary gland. SON neurons are powerfully inhibited by the classical μ-opioid receptor agonist, morphine. Oxytocin neurons develop morphine dependence when chronically exposed to this opiate, and undergo robust withdrawal excitation when morphine is subsequently acutely antagonized by naloxone. Morphine withdrawal excitation is evident as an increased firing rate and is associated with an increased post-spike excitability that is consistent with the expression of an enhanced post-spike afterdepolarization (ADP) during withdrawal. Here, we used sharp electrode recording from SON neurons in hypothalamic explants from morphine naïve and morphine treated rats to determine the effects of morphine on the ADP, and to test the hypothesis that morphine withdrawal increases ADP amplitude in SON neurons. Acute morphine administration (0.05–5.0 μM) caused a dose-dependent hyperpolarization of SON neurons that was reversed by concomitant administration of 10 μM naloxone, or by washout of morphine; counter-intuitively, acute exposure to 5 μM morphine increased ADP amplitude by 78 ± 11% (mean ± SEM). Naloxone-precipitated morphine withdrawal did not alter baseline membrane potential in SON neurons from morphine treated rats, but increased ADP amplitude by 48 ± 11%; this represents a hyper-activation of ADPs because the basal amplitude of the ADP was similar in SON neurons recorded from explants prepared from morphine naïve and morphine treated rats. Hence, an enhanced ADP might contribute to morphine withdrawal excitation of oxytocin neurons.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have